

UNDERSTAND DOUGH
BEHAVIOR.
IMPROVE CONSISTENCY

Table of contents

Introduction: Why your pizza dough betrays you.....	4
Chapter 1: If you recognize these dough problems, you're not alone.....	5
Common dough problems in pizza making.....	5
Why these problems are difficult to solve.....	7
Chapter 2 : The lie we've all been told about pizza dough.....	8
The promise of the “perfect recipe”	8
When following the recipe is not enough.....	8
What recipes actually describe	9
A necessary shift in the approach.....	9
Chapter 3: Meet the real boss of your dough: gluten.....	11
What gluten is (and what it is not).....	11
Why gluten matters more than any ingredient	12
What nobody tells you	13
Why gluten is difficult to “see”	13
From concept to consequence	13
Chapter 4: Elasticity: the hidden force that shapes (or ruins) your pizza	14
Defining Gluten elastic properties in dough.....	14
The good news.....	16
The 4 elements that impact gluten elasticity.....	17
The overall picture is becoming clearer	18
Chapter 5 : Every dough problem is an elasticity problem (in disguise)	19
From symptoms to mechanism.....	19
Connecting the dots.....	19
Why do standard corrections often fail	21
Why intuition alone is not enough.....	21
Chapter 6: The 4-Step Dough Control Method.....	23
Why a system is necessary	23
What this system is (and is not)	23
The logic behind the 4 steps.....	24
Overview of the 4 steps	24

Understand dough behavior. Improve consistency.

Chapter 7: Two steps that will already change your dough forever	31
Why starting conditions matter more than corrections.....	31
Step 1 in practice	31
Step 2 in practice	34
What already changes with these two steps	35
Why this is still not full control	35
Chapter 8 : Why consistency still feels difficult	37
Final note — The next step	37

Understand dough behavior. Improve consistency.

Introduction: Why your pizza dough betrays you

(even when you do everything “right”)

You followed the recipe.

You respected the hydration.

You weighed the yeast to the decimal.

And yet...

One day your dough stretches beautifully. The next day it fights you: it shrinks back, it tears, no crust or maybe soggy. It feels sticky or rubbery. Just completely unpredictable.

If this sounds familiar, let me tell you something important: you’re not doing it wrong.

Most pizza makers — amateurs and professionals — struggle with the same problems. And almost all of them try to fix the wrong thing.

For years, I did the same. And since I became a professional pizza trainer, I have seen thousands of my students doing exactly the same.

Over the years, while studying, experimenting and teaching pizza, I realized something that completely changed the way I look at pizza dough: **pizza dough is not about recipes. It's about control.** More precisely: **control over gluten elasticity over time.**

This ebook will not give you “the perfect recipe” or reveal the secrets of the dough (because the dough doesn't have any “magical” secrets). It will give you something far more powerful:

A way to understand what your dough is doing — and why.

And once you understand that, consistency stops being luck.

And just to be clear, all of the content you find here applies whether you are realizing NEAPOLITAN PIZZA or any other type of PIZZA.

Let's start.

Chapter 1: If you recognize these dough problems, you're not alone

And no — it's not because you're bad at pizza

Before discussing techniques or methods, it is essential to establish a shared diagnosis. This chapter identifies the most common dough-related problems encountered by pizza makers and clarifies an important point: these problems are widespread and do not reflect a lack of skill. They are the consequence of how dough is commonly taught and understood.

Common dough problems in pizza making

After training thousands of students, I have seen the following issues appearing consistently. You may recognize one or several of them.

During dough handling and stretching:

- Dough lacks elasticity by the end of kneading
- Sticky dough after kneading or during shaping
- Dough balls are too relaxed or too compacted.
- Dough resists stretching and shrinks back. The excessive elasticity makes opening difficult
- Dough is too weak and tears despite correct hydration
- Sticky surface even when properly floured
- The crust after baking remains flat, not airy
- The crust is too dense and chewy

From one production to another:

- Identical recipes produce different results
- Dough feels strong one day and weak the next
- Unpredictable behavior despite the same recipe.

Some examples of dough problems are shown in the pictures below.

Understand dough behavior. Improve consistency.

Picture 1 : An incorrect gluten after kneading

Picture 2: A dense crust of NEAPOLITAN PIZZA

Picture 3 : A pizza with too much elasticity, that shrank after baking

Understand dough behavior. Improve consistency.

Picture 4 : Elastic dough that tears during stretching

Observation:

If you experience two or more of these problems regularly, the issue is not accidental.

Why these problems are difficult to solve

When those problems arise, most pizza makers respond by adjusting variables:

- Increasing or decreasing hydration
- Modifying yeast quantity
- Changing fermentation duration
- Switching flour

While these adjustments can sometimes improve results, they often lead to new or different problems. As a result:

- One problem may improve
- Another problem appears

This cycle creates the impression that dough is unstable or unpredictable. In reality, the dough is reacting consistently — just not visibly.

The outcome is **inconsistency**. How is that possible? It is because these adjustments are often made without understanding a fundamental aspect.

Understand dough behavior. Improve consistency.

Chapter 2 : The lie we've all been told about pizza dough

Why recipes, hydration, and yeast are not the real issue

Pizza making education is largely built around recipes. While recipes are useful, relying on them as the primary tool for improving dough quality leads to a fundamental misunderstanding. This chapter explains **why recipes alone cannot produce consistent results**, and why most dough problems persist even when recipes are followed precisely.

The promise of the “perfect recipe”

Most pizza makers begin their journey with the same assumption: “If I find the right recipe, my dough problems will disappear”. This belief is understandable. Recipes are clear but they give a “fake” sense of control.

Hydration percentages, yeast quantities, and fermentation times appear to offer precision and repeatability. But it takes just a simple scenario to understand the reality.

When following the recipe is not enough

Imagine you are making several doughs with same recipe. So:

- same flour
- same hydration
- same quantity of yeast
- same fermentation time
- same process

Yet the dough behaves differently from one batch to another. This experience is extremely common and often deeply frustrating.

Key observation:

If a recipe were sufficient on its own, identical inputs would always produce identical results. The fact that they do not indicate that something essential is missing.

Understand dough behavior. Improve consistency.

What recipes actually describe

A recipe describes **inputs and steps**. It tells you:

- what ingredients to use
- in what proportions
- in which order

What it does **not** describe is:

- how the dough structure evolves over time
- how elastic properties change during fermentation
- how environmental factors interact with the dough

In other words, a recipe describes *conditions*, not *behavior*.

We got to the key point.

At this stage, it is important to shift perspective. The central question is not:

“Which recipe should I use?”

But rather:

“What is happening inside my dough, why and how can I control it ?”

A necessary shift in the approach

Although all the problems in our dough seem different, they all share a common characteristic: they are elastic reactions occurring inside the dough structure.

In other words, while following a recipe, the dough structure evolved in an uncontrolled manner and in the wrong direction, which resulted in no crust development or an elastic dough, just to name a few.

As recipes explain what to do rather than what the dough is doing internally, we need to change our perspective and put aside the recipe for a moment. We need to look at the dough structure and the principles that it follows.

Once these principles are understood, dough behavior becomes:

1. **predictable**
2. **reproducible**
3. **controllable**

Understand dough behavior. Improve consistency.

At the heart of most dough problems lies a question no recipe can answer:

How does my dough elasticity change over time?

This does not mean recipes are useless. They are a **starting point**, not a method.

To move from approximation to control, one must understand:

- which internal structures govern dough behavior
- how those structures respond to time, temperature, and handling

Only then can recipes be used effectively and adapted reliably.

To understand dough behavior, we must now examine the structure responsible for its mechanical properties. That structure is **gluten**.

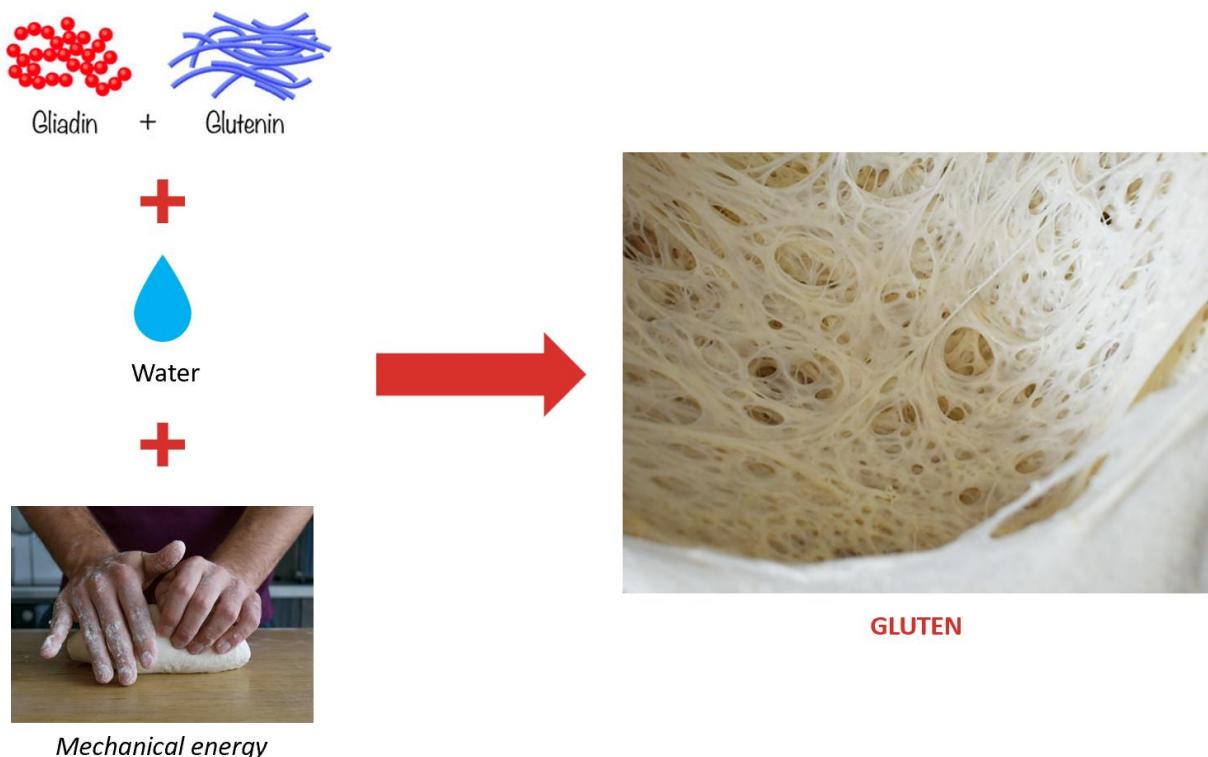
In the next chapter, we will look at gluten not as a vague concept, but as a functional system that determines how dough stretches, resists, and recovers.

Understand dough behavior. Improve consistency.

Chapter 3: Meet the real boss of your dough: gluten

And why do most explanations stop exactly where things get interesting

Gluten is often mentioned in pizza making but rarely explained in a way that helps solve practical problems.


This chapter clarifies **what gluten actually is**, its properties and why it governs the elastic behavior of dough.

Understanding this structure is essential before discussing control or methods.

What gluten is (and what it is not)

Gluten is not an ingredient added to dough. It is a **protein compound** that creates a network that holds our dough together and that forms the dough structure we mentioned earlier.

The gluten is formed once we mix flour (with its proteins *gliadins* and *glutenines*) and water with the mechanical energy provided by kneading, which gives it strength and tenacity.

Why gluten matters more than any ingredient

All visible dough behavior originates from the gluten network. Gluten determines:

- How the dough behaves during kneading
- How easily the dough stretches
- How it reacts to handling and time
- How it will develop during baking

Picture 5: Most dough properties are impacted by gluten elasticity

Hydration, yeast, and fermentation influence dough only **through their effect on gluten**.

They are indirect variables.

Understand dough behavior. Improve consistency.

What nobody tells you

There are loads of misconceptions in the pizza world but in our journey to control and master the dough there is one that has an immense impact :

“Gluten development stops after mixing”

The fact that gluten continues to evolve after mixing is a critical notion to understand where to focus attention and energy.

Ok so the gluten evolves. Great, but how? What are its properties and how it evolves? And how that affects the result?

Why gluten is difficult to “see”

Unlike hydration or yeast quantity, gluten behavior is not directly measurable in a recipe.

It must be **observed through dough response** during the recipe

- resistance during stretching
- surface tension
- fermentation levels and shapes

Without a framework for interpreting these signals, gluten remains abstract.

From concept to consequence

Every dough problem described in Chapter 1 can be traced back to gluten behavior:

- a shrinking dough has a gluten with too much elasticity
- Day-to-day inconsistency comes from uncontrolled gluten evolution

Recognizing this connection is the first step toward control. Understanding that gluten governs dough behavior is not yet enough. To control it, we must analyze its **elastic properties**.

In the next chapter, we will examine elasticity in detail — not as a vague sensation, but as a measurable and manageable force within the dough.

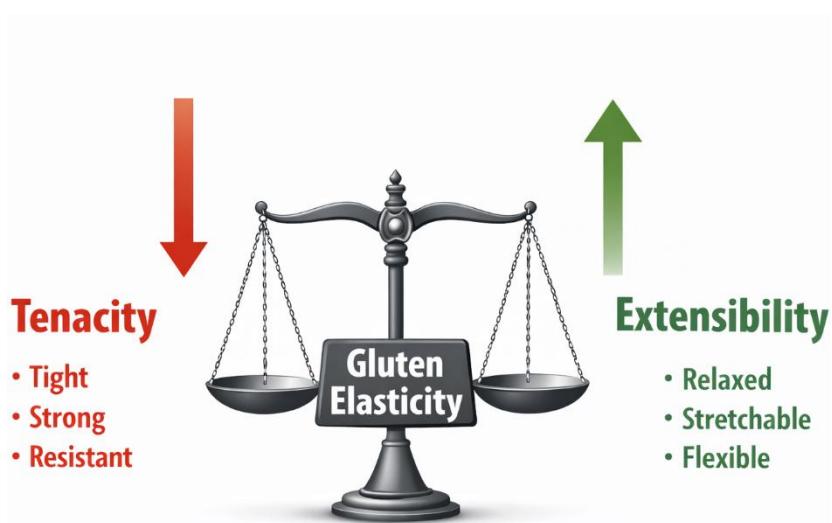
Chapter 4: Elasticity: the hidden force that shapes (or ruins) your pizza

When strength becomes your worst enemy

Gluten strength is often presented as a desirable quality.

However, strength alone does not determine dough quality.

This chapter explains **elasticity as a mechanical property**, how it manifests in dough behavior, and why unbalanced elasticity is responsible for many common pizza-making problems.


Defining Gluten elastic properties in dough

Gluten behaves (almost) like an elastic material. And so in order to describe the behavior of gluten in our dough, we need to define 2 elastic properties:

- **Tenacity**, which can be defined as the resistance of gluten to deformation
- **Extensibility**, which can be defined as gluten's ability to be easily deformed and stretched without resistance

By simply reading these 2 definitions, you can see that one is the opposite of the other. You can visualize that as a balance with tenacity at one end, and extensibility on the other. If we increase the tenacity, the extensibility will decrease and vice versa.

Understand dough behavior. Improve consistency.

Picture 6: Gluten elasticity balance

Depending on how we deal with gluten elasticity in our dough, the balance will be more on one side or the other.

What nobody tells you is that each time we make a dough, we need to balance tenacity and extensibility. And what dictates how this balance should look like? The type of pizza we are making.

Let's make an example here. And take a CONTEMPORARY NEAPOLITAN PIZZA

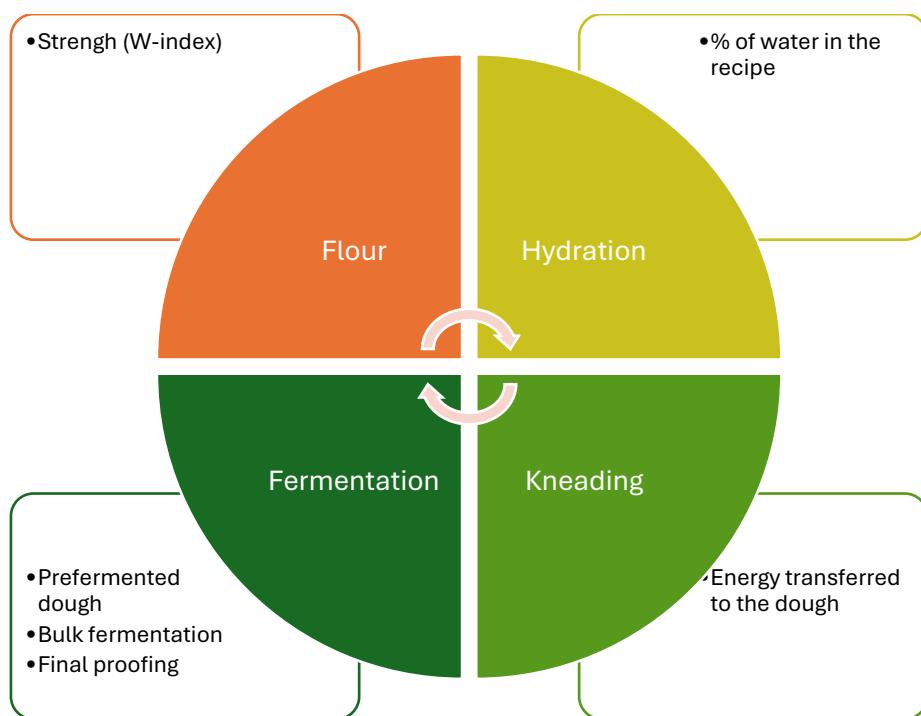
Understand dough behavior. Improve consistency.

If I am realizing this type of pizza, I will need a dough that stretches easily but with a minimum tenacity so that the dough doesn't tear and so that it can develop on the crust. So, the balance will look like this :

Contemporary Neapolitan pizza dough wants an important level of extensibility, with a bit of tenacity.

The good news

Yes, there is of course good news here. This balance in gluten tenacity and extensibility is something that can be fully controlled when realizing a dough.


What we need to do is to forget the recipes for a second and look more closely at the glutenstructure and understand how this balance changes in our dough and what are the variables we can act upon to control the tenacity and extensibility.

Understand dough behavior. Improve consistency.

The 4 elements that impact gluten elasticity.

Here are the 4 elements of our dough that impacts tenacity and extensibility :

- Flour strength
- Hydration (water quantity in the dough is expressed in % over the weight of the flour)
- Kneading
- Fermentations (pre-fermentation of BIGA or POOLISH, bulk fermentation and final proofing)

This means that we can control the gluten elasticity by :

- Choosing correctly the flour and its performances
- Choosing correctly the hydration
- Mixing the dough to the right level of elasticity
- Managing the fermentations to dose tenacity and extensibility

The overall picture is becoming clearer

We are starting to see things clearly now. From what we saw until now we can summarize the following:

1. All problems in the dough come from the gluten structure
2. Following a recipe doesn't allow you to take care of those problems because a recipe describes *conditions*, not *behavior*.
3. Lack of consistency comes from following a recipe instead of focusing on the gluten
4. The gluten structure impacts the main behaviors and textures of the dough throughout the preparation process
5. To achieve consistency and get rid of majority of dough problems, we need to achieve the right balance between tenacity and extensibility
6. We can act on the flour, hydration, kneading and fermentation management to control the extensibility and tenacity.

Elasticity alone does not explain all dough problems.

However, it provides the missing link between gluten structure and practical handling issues.

In the next chapter, we will connect specific dough problems directly to elasticity behavior — and show why every issue discussed earlier follows the same underlying logic.

Chapter 5 : Every dough problem is an elasticity problem (in disguise)

Once you see it, you can't unsee it

Up to this point, we have examined dough problems, recipes, gluten, and elasticity as separate concepts.

This chapter brings them together.

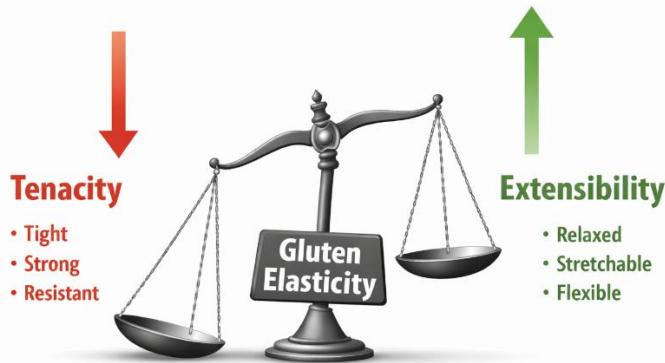
Its objective is to demonstrate that **apparently different dough problems are manifestations of the same underlying imbalance between gluten tenacity and extensibility.**

From symptoms to mechanism

Most problems are treated as independent issues:

- Dough that shrinks
- Dough that tears
- Dough that feels sticky
- Dough that behaves inconsistently

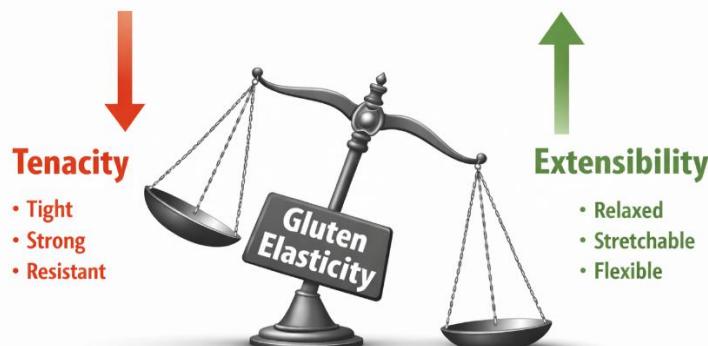
These symptoms are connected. They represent **different expressions of the same imbalance of gluten elasticity.**


Connecting the dots

Let's see now how the most frequent dough problems are linked to this imbalance of gluten elasticity.

To help ourselves, we are going to make two scenarios: one where the imbalance goes all the way to the tenacity, and the second scenario when the imbalance is all on the extensibility side

Understand dough behavior. Improve consistency.


Scenario 1: Too much tenacity

Result: the dough is too strong and elastic

- Fermentations were out of control giving the dough too much tenacity
- The dough can be too sticky during shaping or stretching.
- The dough can be hard during stretching; it tends to shrink making the stretching phase longer and more difficult.
- If stretched too much the dough could tear.
- After baking, the dough shrank even further, the dough is soggy and the crust is very dense.

Scenario 2: Too much extensibility

Result: the dough is too extensible and weak

Understand dough behavior. Improve consistency.

- The dough is too difficult to work with after kneading.
- During shaping, the dough can be sticky as the kneading hasn't given the required tenacity to balance the extensibility.
- The dough balls are completely flat as the dough kept on accumulating extensibility rather than tenacity.
- Stretching is a nightmare as the dough is fragile and tears very easily.
- After baking, the dough developed very little and the crust lacks lightness.

All of these issues are interconnected with one cause: imbalance of gluten elasticity

Why do standard corrections often fail

Because these issues are interpreted as separate, corrections are applied independently:

- Adjust hydration to fix stickiness
- Change fermentation time to fix shrinkage
- Switch flour to fix tearing

These actions may temporarily improve one symptom while intensifying another. The underlying elasticity imbalance remains.

Why intuition alone is not enough

Experienced pizza makers often rely on intuition to manage dough behavior. Over the years, I realized that while intuition is valuable, it has limits. Without a clear framework:

- corrections remain reactive
- results depend on experience and luck
- Consistency is difficult to reproduce

When we are making dough (especially in a professional environment), we need that consistency to provide the same pizza and result to the final customer.

A method is required to make elasticity management **systematic rather than intuitive**. Because, when elasticity is controlled, dough problems stop appearing randomly. But we can anticipate and ultimately prevent them.

Understand dough behavior. Improve consistency.

If dough problems follow a single underlying logic, they can be addressed with a single coherent approach.

In the next chapter, we will outline a structured system I have designed over the years to control gluten elasticity over time — a method that transforms understanding into repeatable results.

Chapter 6: The 4-Step Dough Control Method

A system to control gluten elasticity over time

Up to this point, we have focused on understanding. Understanding alone, however, does not produce consistent results. This chapter introduces a structured system designed to **control gluten elasticity over time**, transforming theoretical insight into repeatable practice.

The objective here is not to teach every detail, but to present the **logic and architecture** of the method.

Why a system is necessary

Dough behavior is dynamic, but it is influenced by a number of variables that we know and we can control (time, temperature, yeast quantities, etc...) . On top of that, the dough behaves in accordance with scientific principles that are known and that form the basis of this methodology.

The system allows us to

- anticipate changes
- know and control the elasticity level at each stage
- adapt the steps to different environments

This is the role of the 4-step system.

What this system is (and is not)

This system is:

- a framework for decision-making
- declinable to any dough recipes

Understand dough behavior. Improve consistency.

- applicable to different flours
- applicable to any conditions (professional and home practice)

This system is not:

- a fixed recipe
- a list of tricks
- dependent on intuition or luck

Key principle:

Recipes tell you *what* to do.

Systems tell you *when* and *why*.

The logic behind the 4 steps

Each step of the system addresses a specific phase in the life of dough.

Together, they ensure that gluten elasticity:

- develops in the direction of the balance we require
- is correctly measured at each step
- can be maintained even with a change of conditions (different temperatures or new flour)

The steps are sequential but interconnected. Skipping or misaligning one step affects the entire process.

Overview of the 4 steps

Below is a high-level overview of the system.

Understand dough behavior. Improve consistency.

Step 1 — Setting the Initial Conditions

Understanding the elasticity map for the chosen type of dough

The problem this step solves

Many dough problems originate from **unclear or unvalidated starting conditions**.

This can happen when:

- a dough technique is chosen without confirming its elastic implications
- an existing process is reused without being re-evaluated
- flour selection is misaligned with the intended elasticity behavior
- hydration is fixed without a clear elastic objective
- organizational constraints are not taken into account

Starting the process without clearly defined initial conditions leads to **inconsistent and difficult-to-control results**.

Core principle : Elasticity must be planned before it is built.

What happens in this step

At this stage, the elastic context of the dough is defined or validated.

This includes:

- selecting or confirming the dough technique (direct, indirect, or semi-direct)
- defining the associated elasticity objective over time
- choosing flour accordingly
- formulating hydration as a **working hypothesis**, not a fixed value

At the end of this step, the process has direction. The conditions under which gluten will be built and guided are clearly established.

Understand dough behavior. Improve consistency.

Outcome

At the end of this step:

- The elastic objective of the dough is clearly defined
- Ingredients and technique are aligned with that objective
- The foundations for controlled elasticity are established

This alone makes the right foundations before starting the dough

Step 2 — Guiding elasticity through the process

Validating elastic checkpoints over time

The problem this step solves

Knading and fermentation have an enormous impact on gluten elasticity. To ensure regularity and reduced problems in our dough, we need to ensure that each stage of our dough gives the right level of tenacity and extensibility and achieve the right elasticity balance. This step gives the tool to achieve the right elasticity after each step and each fermentation, no matter the conditions.

Core principle: at each step of the process, gluten elasticity is controlled

What happens in this step

- Time and temperature are used as elasticity control tools so that the right fermentation can be achieved in any condition
- Visual and tactile references validate gluten behavior at each stage
- Adjustments are made to maintain the correct balance of tenacity and extensibility

Outcome

After this step,

- The correct gluten will be formed with the right tenacity and strength to start the following fermentation steps.
- Each fermentation step will have provided the right balance of tenacity and extensibility so that majority of dough problems are taken care of.
- An overall control on the fermentation process is ensured so that even with changing conditions, the same gluten elasticity will be achieved.
- Full consistency and regularity is ensured if the dough follows the same fermentation

Understand dough behavior. Improve consistency.

Step 3 — Reading the Result

Interpreting dough behavior at stretching and after baking

The problem this step solves

A good result is not yet a perfect result. This step teaches how to **read the outcome** in order to understand what must be improved as regards the elastic balance of gluten.

Without proper evaluation:

- mistakes are repeated
- adjustments are random
- progress slows or stops

Core principle: the final result contains all the information needed to improve the next dough.

What happens in this step

The dough is evaluated through:

- stretching behavior
- Final pizza aspect
- crumb structure after baking

Each observation is linked back to gluten elasticity.

Outcome

After this step,

- A clear mechanical diagnosis is established
- Improvement priorities are identified
- Guesswork is eliminated

Understand dough behavior. Improve consistency.

Step 4 — Targeted Variable Adjustment

Closing the feedback loop to balance elasticity

The problem this step solves

Once the diagnosis is clear, changes must be **specific and controlled**. This step transforms evaluation into precise action.

Random changes often fix one problem while creating another. This step ensures that only the necessary variables are modified — and nothing else.

The principle

A decision table is provided to indicate the possible specific and targeted changes to implement in the process to improve a particular aspect of the final result.

What happens in this step

- A decision table links observed issues to specific process variables
- Adjustments are applied to technique, fermentation, or handling
- The method is reused cyclically

Outcome

After this step, a list of modifications is available to further improve the result.

Understand dough behavior. Improve consistency.

The nature of this last step highlights how the method is intended to be used in a loop manner to improve (autonomously) each aspect of the dough that is not yet perfectly managed.

Consistency increases with every iteration, that is a winning aspect of this method.

Understand dough behavior. Improve consistency.

Chapter 7: Two steps that will already change your dough forever

(Even if you stop reading here.)

The objective of this chapter is practical. By applying only, the first two steps of the Dough Control Method, most pizza makers will already experience a noticeable improvement in dough regularity and handling.

These steps do not solve every problem. They do, however, demonstrate the logic and effectiveness of the system.

Why starting conditions matter more than corrections

Most dough problems are not created during fermentation. They are created before fermentation even begins.

Once gluten elasticity is poorly oriented or excessively constrained, later stages can only compensate partially. Fermentation, handling, and rest cannot fully correct an incorrect starting structure.

This is why many pizza makers spend time “fixing” dough that was already compromised from the beginning.

The first two steps of the method exist precisely to prevent this situation.

Step 1 in practice

Defining the elastic basis of our dough – CONTEMPORARY NEAPOLITAN PIZZA WITH BIGA METHOD

Before any ingredient is mixed, a decision must be made:

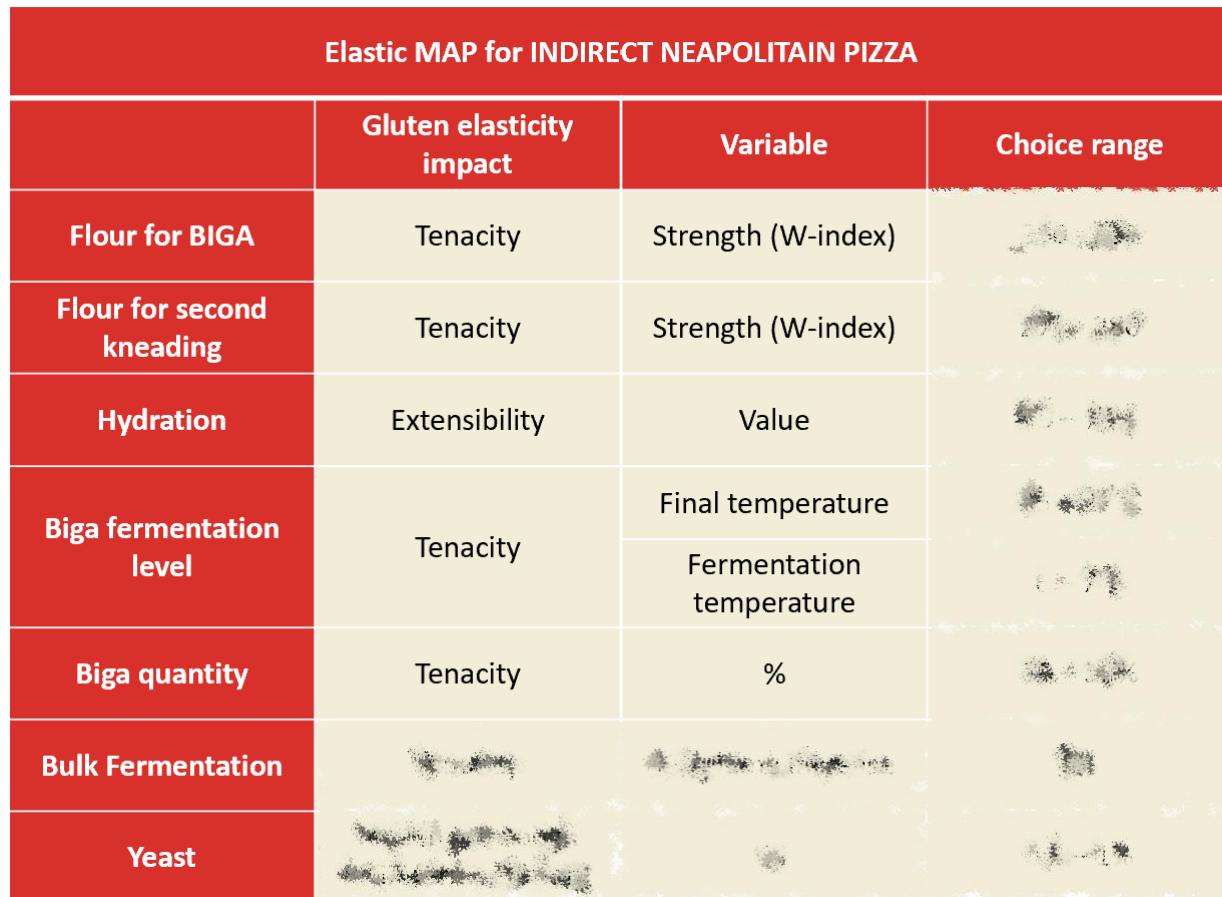
What elastic balance is expected from this dough, and how?

This question determines everything that follows.

A dough intended for *Contemporary Neapolitan Pizza* does not require the same elasticity as a *Roman pizza* or a *Traditional Neapolitan Pizza*.

Understand dough behavior. Improve consistency.

The *Contemporary Neapolitan Pizza* wants a very extensible gluten with sufficient tenacity to have a developed crust. Just like the diagram here shows.


In this step, the dough technique is chosen intentionally, not by habit.

Next we need to choose :

- Type of flour
- Hydration
- Dosage for the BIGA

The elasticity map (partially shown here) built into the method gives all the information we need:

Understand dough behavior. Improve consistency.

The flour is selected for its compatibility with that technique. As we are realizing an indirect dough technique, we should adapt the W-index for the flour used in the BIGA and the one used in the second kneading.

The *elastic map* guides to a different choice for these two flours:

- A stronger one for the BIGA
- A flour with lower W-index for the 2nd Kneading.

As I am looking for a dough with not too much tenacity, the overall W-index shouldn't be too high, as that will cause a high tenacity.

Hydration is formulated as a working hypothesis, not as a fixed rule. The choice comes from the balance optimization given the dough technique.

At this stage, nothing has changed physically — yet the process already has direction.

The *elasticity map* defined here establishes:

- how ingredients should be chosen

Understand dough behavior. Improve consistency.

- which variables I can use to control the elasticity
- which values to choose

This clarity alone eliminates a large portion of inconsistency.

Step 2 in practice

Guiding elasticity during the BIGA PREPARATION .

Once the elastic objective is defined, kneading takes on a different role.

Kneading is no longer about developing as much gluten as possible.

It is about setting the foundations to build elasticity in the right direction. Form those foundations, fermentation can work effectively.

Different mixing methods — hand kneading, single-speed mixers, multi-speed spiral mixers — impose different mechanical stresses on the dough. Applying the same kneading logic to all of them leads to unpredictable results.

In this step, kneading variables are adapted intentionally:

- mechanical intensity
- sequencing
- temperature
- duration

The objective is to create a coherent gluten network depending on the dough we are realizing.

In our example, we are using a BIGA method, so the kneading variables need to be adapted accordingly:

- **mechanical intensity** -> low speed as the BIGA requires no gluten formed => the first speed will be enough (if using a mixer)
- **temperature** -> Biga temperature impacts the fermentation starting point. As seen in the elastic map, the fermentation of biga will impact directly the tenacity of the dough so I need to ensure a proper level of fermentation by the end. This can be ensured by the right temperature before fermentation starts.

Understand dough behavior. Improve consistency.

- **Duration** -> No gluten is needed to be formed in the BIGA, so a short kneading will be enough

Up to this point, STEP 2 is not completed as the elasticity map will give the tools to obtain the right fermentation level and to complete the entire process.

What already changes with these two steps

When these first two steps are applied correctly, several improvements are typically observed as far as the gluten elasticity is concerned:

- Adapting the flour strengths allows for controlled tenacity
- The specific dosage of the BIGA allows a more controlled extensibility
- A higher temperature after kneading ensures an adapted cold fermentation for the BIGA
- Temperature measurement of BIGA allows for more predictability and better fermentation control
- The balanced hydration allow the gluten to be sufficiently extensible without penalizing the baking stage.

The difference lies in orientation and structure, not in ingredients.

Why this is still not full control

Although these improvements are significant, they remain partial.

Gluten elasticity continues to evolve once the BIGA is ready after kneading and throughout the rest of the process.

Fermentation introduces new variables.

Environmental conditions alter timing and balance.

Without guiding elasticity through fermentation, reading the final result, and adjusting the process deliberately, consistency remains fragile.

This is not a limitation of the method. It is the reason the method exists as a complete system.

Understand dough behavior. Improve consistency.

Understanding and partial application already produce results.

However, many pizza makers reach this point and still struggle to achieve full regularity. Not because the logic is wrong, but because application requires structure over time.

In the next chapter, we will examine why understanding gluten and elasticity is often not enough — and why structured guidance is the difference between improvement and mastery.

Understand dough behavior. Improve consistency.

Chapter 8 : Why consistency still feels difficult

And why that's normal

Understanding dough behavior is essential, but it is not the final step.

Pizza dough is a dynamic system. Gluten elasticity continues to evolve with time, temperature, handling, and environment. Even when the principles are clear, applying them consistently under changing conditions remains challenging.

This is not a lack of knowledge.

It is a limitation of application.

Experience helps, but without structure, adjustments remain reactive and progress slows.

Consistency is built through repetition, evaluation, and controlled correction.

Understanding shows you what to control.

Mastery comes from knowing how and when to act.

Final note — The next step

You now understand what drives dough behavior.

You know that consistency is not about recipes, but about managing gluten elasticity over time. This alone will already improve your results.

This ebook provides principles.

Consistency comes from application.

If you want structured guidance to apply the Dough Control Method in real conditions — whether at home or in a professional environment — the training is available here:

Apply the Dough Control Method

There is no obligation to continue.

Whatever you choose, the overall picture is becoming clearer — you now know what to control, and why.